3.315 \(\int \frac{\sqrt{a+b x^2+c x^4}}{x^3 (d+e x^2)} \, dx\)

Optimal. Leaf size=361 \[ \frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 d^2}+\frac{\sqrt{a} e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d^2}-\frac{b e \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} d^2}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} d^2}-\frac{\sqrt{a+b x^2+c x^4}}{2 d x^2}-\frac{b \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{a} d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 d} \]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*d*x^2) - (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[a]
*d) + (Sqrt[a]*e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2) + (Sqrt[c]*ArcTanh[(b + 2
*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*d) - (b*e*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c
*x^4])])/(4*Sqrt[c]*d^2) - ((2*c*d - b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[
c]*d^2) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2
]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.509155, antiderivative size = 361, normalized size of antiderivative = 1., number of steps used = 21, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {1251, 960, 732, 843, 621, 206, 724, 734} \[ \frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 d^2}+\frac{\sqrt{a} e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d^2}-\frac{b e \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} d^2}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} d^2}-\frac{\sqrt{a+b x^2+c x^4}}{2 d x^2}-\frac{b \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{a} d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/(x^3*(d + e*x^2)),x]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*d*x^2) - (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[a]
*d) + (Sqrt[a]*e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2) + (Sqrt[c]*ArcTanh[(b + 2
*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*d) - (b*e*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c
*x^4])])/(4*Sqrt[c]*d^2) - ((2*c*d - b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[
c]*d^2) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2
]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2)

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^2+c x^4}}{x^3 \left (d+e x^2\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{x^2 (d+e x)} \, dx,x,x^2\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{\sqrt{a+b x+c x^2}}{d x^2}-\frac{e \sqrt{a+b x+c x^2}}{d^2 x}+\frac{e^2 \sqrt{a+b x+c x^2}}{d^2 (d+e x)}\right ) \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{x^2} \, dx,x,x^2\right )}{2 d}-\frac{e \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{x} \, dx,x,x^2\right )}{2 d^2}+\frac{e^2 \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{d+e x} \, dx,x,x^2\right )}{2 d^2}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 d x^2}+\frac{\operatorname{Subst}\left (\int \frac{b+2 c x}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d}+\frac{e \operatorname{Subst}\left (\int \frac{-2 a-b x}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}-\frac{e \operatorname{Subst}\left (\int \frac{b d-2 a e+(2 c d-b e) x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 d x^2}+\frac{b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d}+\frac{c \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d}-\frac{(a e) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}-\frac{(b e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}-\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}-\frac{(e (b d-2 a e)-d (2 c d-b e)) \operatorname{Subst}\left (\int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 d x^2}-\frac{b \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 d}+\frac{c \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{d}+\frac{(a e) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )}{d^2}-\frac{(b e) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 d^2}-\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 d^2}+\frac{(e (b d-2 a e)-d (2 c d-b e)) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 d^2}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 d x^2}-\frac{b \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{a} d}+\frac{\sqrt{a} e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 d^2}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 d}-\frac{b e \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} d^2}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} d^2}+\frac{\sqrt{c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 d^2}\\ \end{align*}

Mathematica [A]  time = 0.31142, size = 165, normalized size = 0.46 \[ \frac{2 \sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+b d-b e x^2+2 c d x^2}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )+\frac{(2 a e-b d) \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{\sqrt{a}}-\frac{2 d \sqrt{a+b x^2+c x^4}}{x^2}}{4 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/(x^3*(d + e*x^2)),x]

[Out]

((-2*d*Sqrt[a + b*x^2 + c*x^4])/x^2 + ((-(b*d) + 2*a*e)*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^
4])])/Sqrt[a] + 2*Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + 2*c*d*x^2 - b*e*x^2)/(2*Sqrt[c*d^2 - b*d*
e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(4*d^2)

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 1009, normalized size = 2.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x)

[Out]

-1/2/d^2*e*(c*x^4+b*x^2+a)^(1/2)-1/4/d^2*e*b*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c^(1/2)+1/2/d^2*e
*a^(1/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)-1/2/d/a/x^2*(c*x^4+b*x^2+a)^(3/2)+1/2/d*b/a*(c*x^
4+b*x^2+a)^(1/2)-1/4/d*b/a^(1/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)+1/2/d/a*c*(c*x^4+b*x^2+a)
^(1/2)*x^2+1/2/d*c^(1/2)*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))+1/2*e/d^2*(c*(x^2+d/e)^2+(b*e-2*c*d)/
e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/4*e/d^2*ln((1/2*(b*e-2*c*d)/e+c*(x^2+d/e))/c^(1/2)+(c*(x^2+d/e)^2
+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b-1/2/d*ln((1/2*(b*e-2*c*d)/e+c*(x^2+d/e))/c^
(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)-1/2*e/d^2/((a*e^2-b*d*e+c
*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x
^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a+1/2/d/((a*e^2-b*d*e+c*d^2)/e^2)
^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+
(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*b-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(
(2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d
)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2} + a}}{{\left (e x^{2} + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/((e*x^2 + d)*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 3.75858, size = 2414, normalized size = 6.69 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x, algorithm="fricas")

[Out]

[1/8*(2*sqrt(c*d^2 - b*d*e + a*e^2)*a*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e +
8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a
)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) - (b*d - 2*a*e)*
sqrt(a)*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4
) - 4*sqrt(c*x^4 + b*x^2 + a)*a*d)/(a*d^2*x^2), 1/8*(4*sqrt(-c*d^2 + b*d*e - a*e^2)*a*x^2*arctan(-1/2*sqrt(c*x
^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*
x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - (b*d - 2*a*e)*sqrt(a)*x^2*log(-((b^2
 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*sqrt(c*x^4 + b*x
^2 + a)*a*d)/(a*d^2*x^2), 1/4*((b*d - 2*a*e)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqr
t(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + sqrt(c*d^2 - b*d*e + a*e^2)*a*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a
*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2
 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x
^2 + d^2)) - 2*sqrt(c*x^4 + b*x^2 + a)*a*d)/(a*d^2*x^2), 1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*a*x^2*arctan(-1/2
*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e +
a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) + (b*d - 2*a*e)*sqrt(-a)*x^2*
arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*sqrt(c*x^4 + b*x^2 +
a)*a*d)/(a*d^2*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x^{2} + c x^{4}}}{x^{3} \left (d + e x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/x**3/(e*x**2+d),x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/(x**3*(d + e*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2} + a}}{{\left (e x^{2} + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/((e*x^2 + d)*x^3), x)